Long-term follow up of intensively treated AML patients in the HARMONY Big Data Platform

Marta Anna Sobas¹, Angela Villaverde Ramiro², Alberto Hernández Sánchez³, Javier Martinez Elicegui², Teresa González⁴, Raúl Azibeiro Melchor⁵, María Abáigar⁶, Laura Tur⁷, Daniele Dall'Olio⁸, Eric Sträng⁹, Jesse M. Tettero¹⁰, Castellani Gastone¹¹, Axel Benner¹², Konstanze Döhner¹³, Christian Thiede¹⁴, Amin T. Turki¹⁵, Klaus H. Metzeler¹⁶, Torsten Haferlach¹⁷, Frederick Damm⁹, Rosa Ayala¹⁸, Joaquín Martínez-López¹⁹, Ken I Mills²⁰, Jorge Sierra²¹, Sören Lehmann²², Matteo G. Della Porta²³, Jiri Mayer²⁴, Dirk Reinhardt²⁵, Rubén Villoria Medina⁷, Renate Schulze-Rath²⁶, Martje Barbus²⁷, Jesús María Hernández-Rivas²⁸, Brian J.P Huntly²⁹, Gert Ossenkoppele³⁰, Hartmut Dohner³¹ and Lars Bullinger³²

¹Department of Hematology, Blood Neoplasm and Bone Marrow Transplantation, Wroclaw Medical Research of Salamanca (IBSAL), Salamanca, Spain; ³Hematology Department, University Hospital of Salamanca, Salamanca, Spain; ⁴Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Centro de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; ⁵Hospital Universitario de Burgos, Burgos, Spain; ⁶Institute for Biomedical Research of Salamanca, Spain; ⁸University of Bologna, Bologna, Italy; ⁹Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Berlin, Germany; ¹⁰Department of Hematology, Amsterdam, Amsterdam, Netherlands; ¹¹Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy; ¹² Division of Hematology and Oncology, University Hospital Ulm, Ulm, Germany; ¹⁴ Department of Internal Medicine I, University Hospital Dresden, Dresden, Germany; ¹⁵Department of Hematology and Stem Cell Transplantation, University Hospital of Essen, Essen, Germany; ¹⁶Department for Hematology, Cell Therapy and Hemostaseology, University of Leipzig Medical Center, Leipzig, Germany; ¹⁷MLL Munich Leukemia Laboratory, Munich, Germany; ¹⁸Hospital Universitario 12 de Octubre, CNIO, Complutense University, Madrid, Spain; ²⁰Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom; ²¹Hospital Santa Creu Sant Pau, Barcelona, Spain; ²²Uppsala University Hospital, Uppsala, Sweden; ²³Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy, Italy; ²⁴Hematology and Oncology, University Hospital Brno, Czech Republic, Brno, Czech Republic; ²⁵Department of Pediatrics III, University Hospital Essen, Germany; ²⁶Bayer AG, Pharmaceuticals Division, Berlin, Berlin, Germany; ²⁷AbbVie Deutschland GmbH & Co KG, Wiesbaden, DEU; ²⁸Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; ²⁹Wellcome-MRC Cambridge, ENG, United Kingdom; ³⁰Vrye Universiteit Academic Medical Center, Amsterdam, NLD; ³¹Internal Medicine III, University of Ulm, Ulm, Germany; ³²Department of Hematology, Oncology and Tumorimmunology (Campus Virchow-Klinikum), Charite University Berlin, Berlin, Germany.

INTRODUCTION

Intensive therapy, based on anthracyclines and cytarabine, followed by allogeneic stem cell transplantation (alloHSCT) remained the backbone of AML treatment for decades. In 2010 the European LeukemiaNet (ELN), based on cytogenetic and molecular genetic characteristics, proposed a risk score to facilitate decisions concerning indications for alloHSCT. Due to constant improvement in understanding the complex biology of acute myeloid leukemia (AML), in 2017 a new era of targeted AML therapy began. Nevertheless, the outcome of AML patients is still unsatisfactory with the 5-year OS around 30% (ref1).

AIM

To analyze changes in epidemiology, management and outcome of AML patients intensively treated between 1997 and 2016 (prior to the era of targeted therapy).

METHOD

Quality controlled, Observational Medical Outcomes Partnership (OMOP), Common Data Model (CDM), harmonized data of the HARMONY Alliance database coming from 100 organizations in 18 European countries were used for this study. Out of all AML records, 5359 patients were selected. The inclusion criteria were as follows: 1. AML treated with intensive chemotherapy (Ara-C at minimal dose of 100-200 mg/m2/d × 5-7 days). 2. Diagnosis and therapy between 1997-2016. Patients treated with intensive regimens were identified regardless of age by the type of chemotherapy (n=4287) or by the age \leq 70 (n=1072) if there was no clear information concerning the therapy. Patients with acute promyelocytic leukemia and those treated with supportive care (SC), hypomethylating agents or targeted therapy were excluded from the analysis. Patients were categorized into 4 calendar periods: 1997-2001 (gr1), 2002-2006 (gr2), 2007-2011 (gr3) and 2012-2016 (gr4). The main outcome parameters analyzed were patient characteristics, overall survival (OS) and relapse-free survival (RFS). OS and RFS were determined using Kaplan-Meier analysis.

RESULTS

Patients

Total n=5359	Group 1 (1997-2001) n=1127	Group 2 (2002-2006) n=1294	Group 3 (2007-2011) n=1821	Group 4 (2012-2016) n=1117	p
53 (18-85) 3745 (69.8) 1229 (22.9) 385 (7.18)	55 (17-84) 689 (61.1) 307 (27.2) 131 (11.6)	51 (15-85) 1012 (78.2) 206 (16) 76 (5.8)	53 (16-86) 1312 (72) 403 (22.1) 106 (5.9)	55 (17-85) 732 (65.5) 313 (28) 72 (6.5)	< 0.001
2498 (46.6)	509 (45.2)	620 (47.9)	853 (46.8)	516 (46.2)	0.5835
2325 (78.3)	660 (70.3)	835 (81.4)	671 (84.7)	159 (75)	< 0.001
16000 [Q1=4500- Q3=49900] [N=4356]	18320 [Q1=4900- Q3=53975] [N=1122]	18755 [Q1=5300- Q3=55950] [N=1154]	14930 [Q1=4300- Q3=46000] [N=1368]	12250 [Q1=3685- Q3=35000] [N=712]	< 0.001
70 [Q1=46,5- Q3=85] [N=3552]	70 [Q1=48,5- Q3=85] [N=1040]	75 [Q1=48- Q3=90] [N=1096]	70 [Q1=46- Q3=85] [N=1067]	63 [Q1=40- Q3=80] [N=349]	< 0.001
4974 (92.82) 385 (7.18)	996 (88.4) 131 (11.6)	1218 (94.2) 76 (5.8)	1715 (94.1) 106 (5.9)	1045 (93.5) 72 (6.5)	< 0.001
1770 (33)	272 (24.1)	485 (37.5)	710 (39)	303 (27)	< 0.001
23.5 (0-213.1)	14.5 (0-213)	23.4 (0-145.1)	24.4 (0-196.8)	31.5 (0-161.6)	-
	n=5359 53 (18-85) 3745 (69.8) 1229 (22.9) 385 (7.18) 2498 (46.6) 2325 (78.3) 16000 [Q1=4500- Q3=49900] [N=4356] 70 [Q1=46,5- Q3=85] [N=3552] 4974 (92.82) 385 (7.18)	n=5359(1997-2001) n=1127 $53 (18-85)$ $3745 (69.8)$ $1229 (22.9)$ $307 (27.2)$ $385 (7.18)55 (17-84)689 (61.1)307 (27.2)307 (27.2)131 (11.6)2498 (46.6)509 (45.2)2325 (78.3)660 (70.3)16000[Q1=4500-Q3=49900][N=1122]70[Q1=46,5-Q3=85][N=3552]70[Q1=48,5-Q3=85][N=1040]4974 (92.82)385 (7.18)996 (88.4)131 (11.6)1770 (33)272 (24.1)$	n=5359(1997-2001) n=1127(2002-2006) n=129453 (18-85) 3745 (69.8) 1229 (22.9) 307 (27.2) 385 (7.18)55 (17-84) 689 (61.1) 307 (27.2) 206 (16) 76 (5.8)51 (15-85) 1012 (78.2) 206 (16) 76 (5.8)2498 (46.6)509 (45.2)620 (47.9)2325 (78.3)660 (70.3)835 (81.4)16000 [Q1=4500- Q3=49900] [N=4356]18320 [Q1=4900- Q3=53975] [N=1122]18755 [Q1=5300- Q3=55950] [N=1154]70 [Q1=46,5- Q3=85] [N=3552]70 [Q1=48,5- Q3=85] [N=1040]75 [Q1=48- Q3=90] [N=1096]4974 (92.82) 385 (7.18) 996 (88.4) 1218 (94.2) 76 (5.8) 1218 (94.2) 76 (5.8) 1770 (33)272 (24.1)485 (37.5)	n=5359(1997-2001) n=1127(2002-2006) n=1294(2007-2011) n=182153 (18-85) 3745 (69.8)55 (17-84) 689 (61.1) 307 (27.2)51 (15-85) 1012 (78.2)53 (16-86) 1312 (72) 403 (22.1)2498 (46.6)509 (45.2)620 (47.9)853 (46.8)2325 (78.3)660 (70.3)835 (81.4)671 (84.7)16000 [Q1=4500- Q3=49900] [N=4356]18320 [N=1122]18755 [Q1=5300- Q3=55950] [N=1154]14930 [Q1=4300- Q3=46000] [N=1368]70 [Q1=46,5- Q3=85] [N=3552]70 [Q1=48,5- Q3=85] [N=1040]75 [Q1=48- Q3=90] [N=1096]70 [Q1=46- Q3=85] [N=1067]4974 (92.82) 385 (7.18)996 (88.4) 131 (11.6)1218 (94.2) 76 (5.8)1715 (94.1) 106 (5.9)1770 (33)272 (24.1)485 (37.5)710 (39)	n=5359(1997-2001) n=1127(2002-2006) n=1294(2007-2011) n=1821(2012-2016) n=111753 (18-85) 3745 (69.8) 1229 (22.9) 385 (7.18)55 (17-84) 689 (61.1) 307 (27.2) 131 (11.6)51 (15-85) 206 (16) 76 (5.8)53 (16-86) 403 (22.1) 313 (22.1) 313 (28) 72 (6.5)55 (17-85) 732 (65.5) 313 (28) 72 (6.5)2498 (46.6)509 (45.2)620 (47.9)853 (46.8)516 (46.2)2325 (78.3)660 (70.3)835 (81.4)671 (84.7)159 (75)16000 (Q1=4500- Q3=49900) (N=4356]18320 (Q1=4900- Q3=53975) (N=1122)18755 (Q1=45300- Q3=55950) (Q3=55950) (N=1154)14930 (Q1=4300- Q3=46000) (Q1=46.5- Q3=85) (Q1=48.5- Q3=85) (N=1040)12250 (Q1=48- Q3=85) (N=1040)70 (N=3552)70 (P1=48,5- Q3=85) (N=1040)75 (P1=48- Q3=85) (Q1=48- Q3=80) (N=1067)63 (Q1=40- Q3=86) (N=349)4974 (92.82) 3996 (88.4)1218 (94.2) 76 (5.8)1715 (94.1) 106 (5.9)1045 (93.5) 72 (6.5)1770 (33)272 (24.1)485 (37.5)710 (39)303 (27)

Early mortality

Characteristics	Total n=5359
Early death ≤ 2 wk 4 wk 8 wk	96 (1.79%) 232 (4.33%) 435 (8.12%)

CONCLUSIONS

• The rate of early deaths decreased over the observation period, most likely related to improved supportive care.

(2002 - 2006)

n=1294

22 (1.7%)

57 (4.4%)

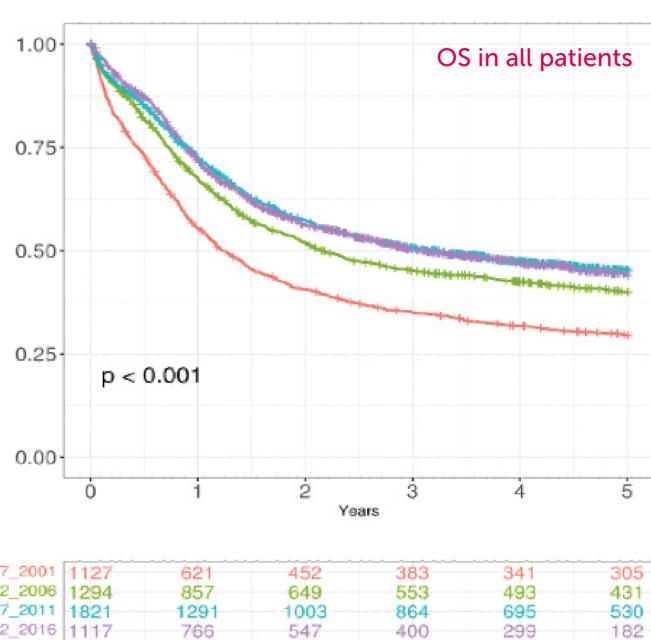
105 (8.11%)

- AlloHSCT improved OS and RFS rate across all 4 calendar periods.
- OS of patients >= 60 years with alloHSCT strongly improved.

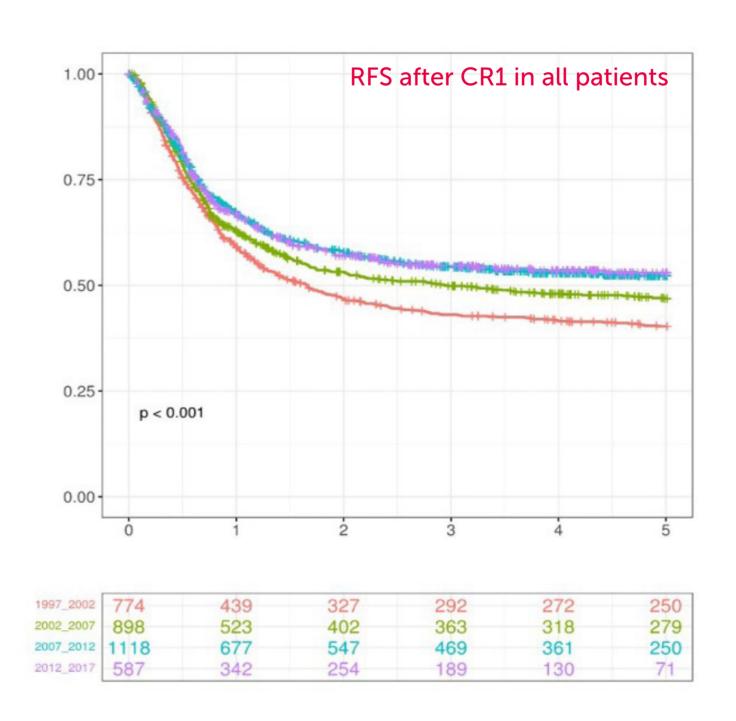
Group 1

n=1127

34 **(3.01%)**


147 **(13.04%)**

71 **(6.3%)**


(1997-2001)

• Improvement of OS was paralleled by performing alloHSCT at more advanced age.

AlloHSCT improves OS and RFS rate across all 4 calendar periods

This is a first long-term historical study performed only on AML patients intensively treated (ref. 2-4). Overall Survival of intensively treated AML patients steadily improved over a longterm follow up of large historical (1997-2016) cohorts due to several factors:

Group 4

n=1117

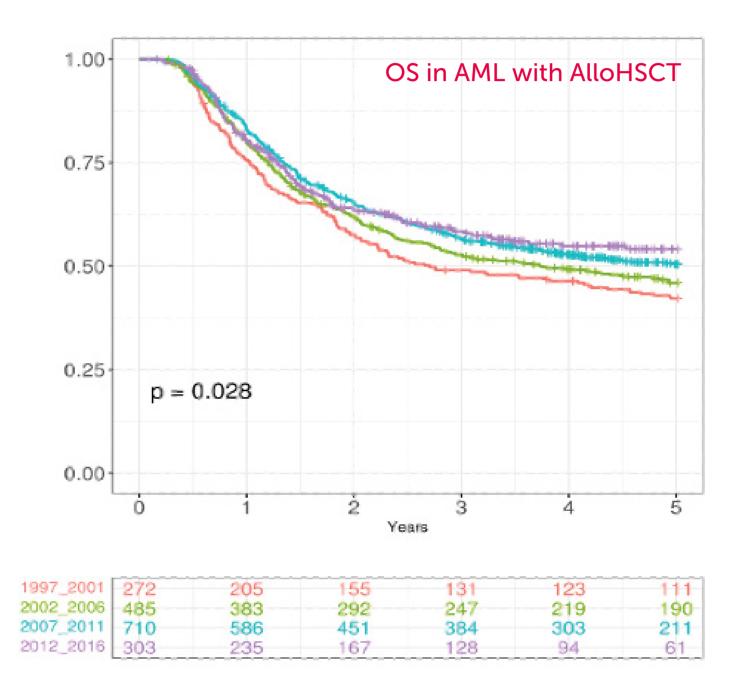
9 **(0.81%)**

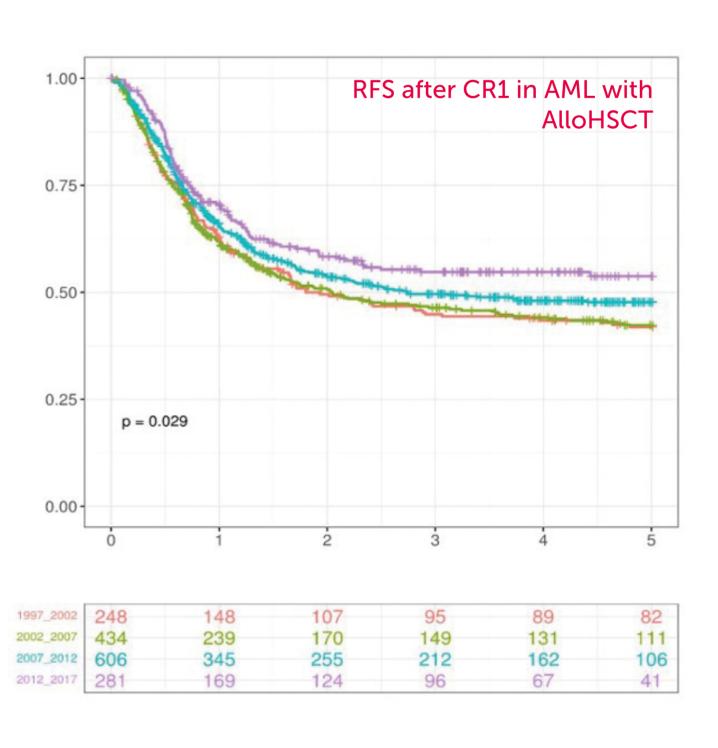
28 **(2.5%)**

53 **(4.74%)**

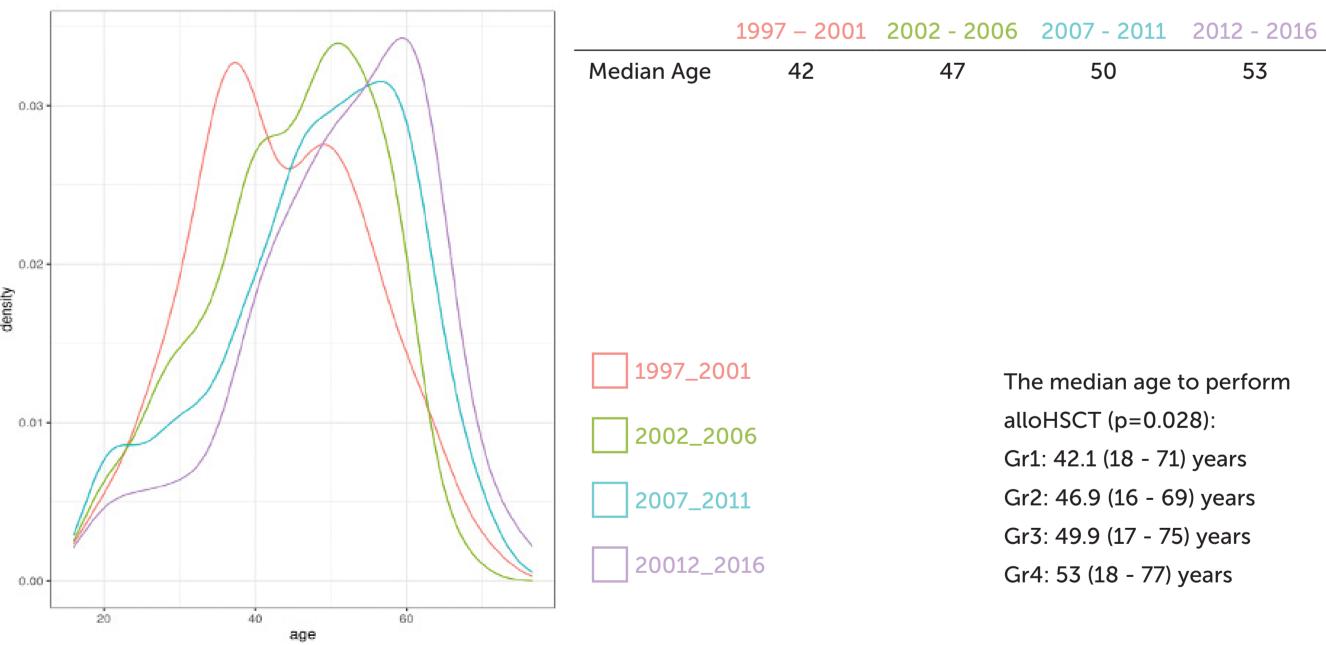
(2007-2011)

n=1821


31 (2.7%)


76 (4.17%)

130 (7.14%)

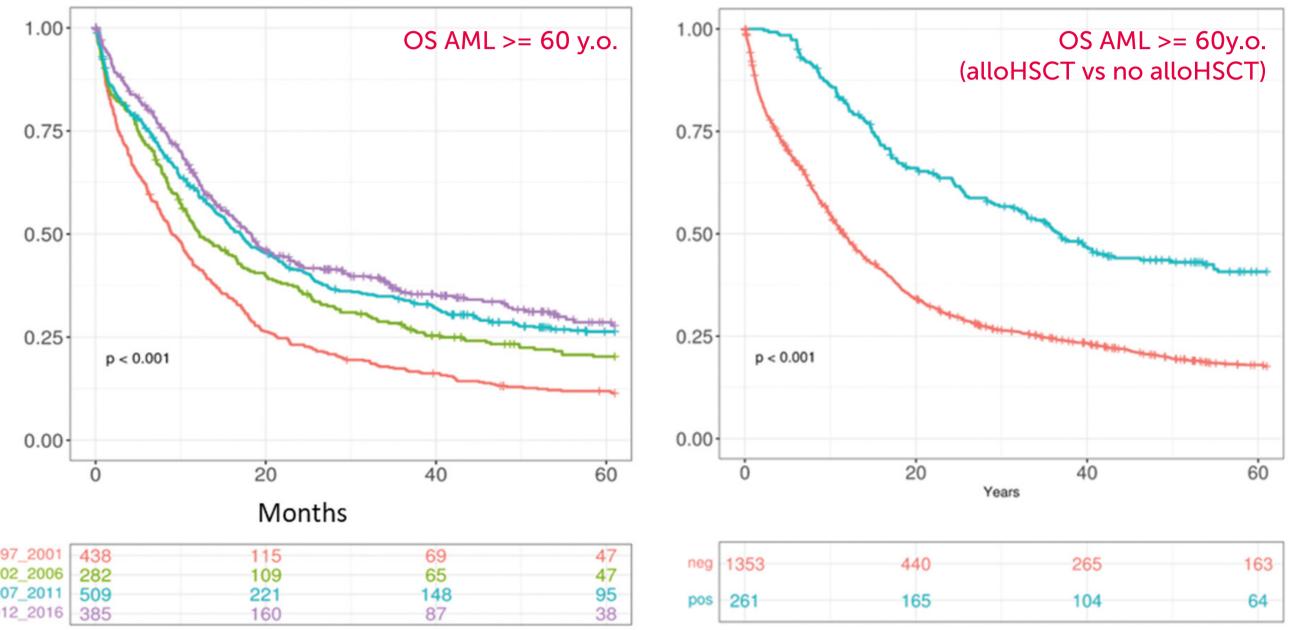

(2012-2016)

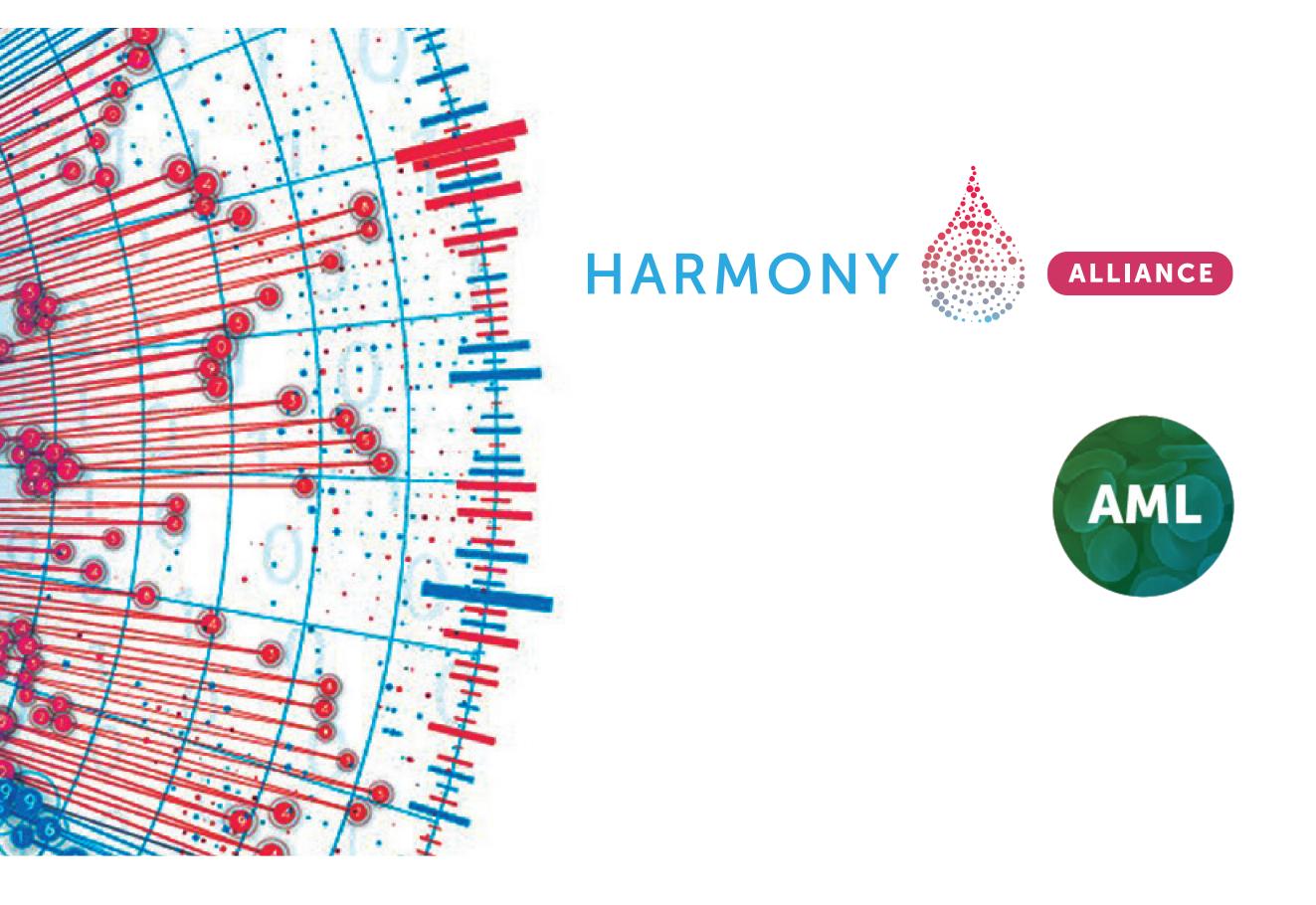
Next steps: deciphering the impact of genetic differences across calendar periods.

REFERENCES

- 1. https://seer.cancer.gov/statfacts/html/amyl.html
- 2. Juliusson G, et al. Improved survival of men 50 to 75 years old with acute myeloid leukemia over a 20-year period. Blood. 2019 Oct 31;134(18):1558-1561.
- 3. Juliusson G, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009 Apr 30;113(18):4179-87. 4. Sasaki K, et al. De novo acute myeloid leukemia: A population-based study of outcome
- in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer. 2021 Jun 15;127(12):2049-2061.

CONTACT INFORMATION


marta.sobas@gmail.com and angelavr@usal.es


The HARMONY Alliance is a Public-Private Partnership for Big Data in Hematology including over 100 organizations such as European medical associations, hospitals, research institutes, patient organizations, pharmaceutical and IT companies.

Funded by IMI (per 2020: Innovative Health Initiative, IHI) of the European Commission: HARMONY (January 2017-June 2023) and HARMONY PLUS (October 2020-September 2023). Using Big Data analytics to accelerate the development of more effective treatments for blood cancer patients. Data are stored in the HARMONY Big Data Platform, which has already identified over 150,000 anonymized patient records, making it one of the largest databases of its kind.

Patients >60 years profit from intensive therapy and alloHSCT

OS - shifting in age when alloHSCT is performed