IF: 2.7
5-year IF: 2.6
Editors-in-Chief
Yuanhe Yang
Bernhard Schmid
CN 10-1172/Q
ISSN 1752-9921(print)
ISSN 1752-993X(online)
  • Volume 17,Issue 2
    22 February 2024
      Research Articles
      Jing Zhu, Xue-Lin Wang, Xing Jin, Lan Jiang, Hong-Yu Lin, Yang Hu, Jin-Fu Liu, Zhong-Sheng He
      2024, 17 (2): rtae004.
      Abstract ( 95 )   PDF(pc) (1347KB) ( 74 )   Save
      Variations in plant traits are indicative of plant adaptations to forest environments, and studying their relationships with tree growth provides valuable insights into forest regeneration. The spatial arrangement of plant seeds within the forest litter or soil critically influences the variations of root-leaf traits, thereby affecting the adaptive strategies of emerging seedlings. However, our current understanding of the impacts of individual root-leaf traits on seedling growth in different relative position, and whether these traits together affect growth, remains limited. This study focuses on the dominant tree species, Castanopsis kawakamii, within the Sanming C. kawakamii Nature Reserve of China. The present experiment aimed to examine the variations in root-leaf traits of seedling, focus on the relative positions of seeds within different layers: beneath or above the litter layer, or within the bare soil layer (without litter). Our findings provided evidence supporting a coordinated relationship between root and leaf traits, wherein leaf traits varied in conjunction with root traits in the relative positions of seeds. Specifically, we observed that seedlings exhibited higher values for specific leaf area and average root diameter, while displaying lower root tissue density. The mixed model explained 86.1% of the variation in root-leaf traits, surpassing the variation explained by the relative positions. Furthermore, soil nitrogen acted as a mediator, regulating the relationship between seedling growth and root-leaf traits, specifically leaf dry matter content and root tissue density. Therefore, future studies should consider artificially manipulating tree species diversity based on root-leaf traits characteristics to promote forest recovery.
      Xiang Song, Jinxu Li, Xiaodong Zeng
      2024, 17 (2): rtae005.
      Abstract ( 33 )   PDF(pc) (4384KB) ( 30 )   Save
      The tree height-diameter at breast height (H-DBH) and crown radius-DBH (CR-DBH) relationships are key for forest carbon/biomass estimation, parameterization in vegetation models and vegetation-atmosphere interactions. Although the H-DBH relationship has been widely investigated on site or regional scales, and a few of studies have involved CR-DBH relationships based on plot-level data, few studies have quantitatively verified the universality of these two relationships on a global scale. This study evaluated the ability of 29 functions to fit the H-DBH and CR-DBH relationships for six different plant functional types (PFTs) on a global scale, based on a global plant trait database. Results showed that most functions were able to capture the H-DBH relationship for tropical PFTs and boreal needleleaf trees relatively accurately, but slightly less for temperate PFTs and boreal broadleaf trees (BB). For boreal PFTs, the S-shaped Logistic function fitted the H-DBH relationship best, while for temperate PFTs the Chapman-Richards function performed well. For tropical needleleaf trees, the fractional function of DBH satisfactorily captured the H-DBH relationship, while for tropical broadleaf trees, the Weibull function and a composite function of fractions were the best choices. For CR-DBH, the fitting capabilities of all the functions were comparable for all PFTs except BB. The Logistic function performed best for two boreal PFTs and temperate broadleaf trees, but for temperate needleleaf trees and two tropical PFTs, some exponential functions demonstrated higher skill. This work provides valuable information for parameterization improvements in vegetation models and forest field investigations.
      Calum J Sweeney, Fidelma Butler, Astrid Wingler
      2024, 17 (2): rtae008.
      Abstract ( 17 )   PDF(pc) (2862KB) ( 20 )   Save
      Phenological research is engaged in monitoring the influence of climate change on the natural environment. The International Phenological Gardens (IPG) network provides a valuable dataset of standardized tree phenology records dating back to the mid-20th century. To make best use of this actively growing record, it is important to investigate how network data can be applied to predict the timing of phenological events in natural populations. This study compared clonally propagated IPG downy birch (Betula pubescens Ehrh.) and hazel (Corylus avellana L.) specimens of central European provenance to nearby wild populations at the western-most margin of the IPG network, in the south-west of Ireland. In addition to monitoring by trained scientists, observations by citizen scientists were included. The order of the timing of phenological events among sites was consistent across 2 years, confirming reproducibility of the results. IPG trees had the earliest B. pubescens leaf unfolding and C. avellana flowering dates of the sites studied. In addition, leaf unfolding occurred later in the wild populations than expected from the temperature responses of the B. pubescens and C. avellana IPG clones. Natural variation in phenology also exceeded the historical change observed at the IPG site, suggesting a potential genetic basis for climate adaptation. Trunk circumference, reflecting the age-dependent increase in tree size, was found to influence C. avellana phenology, with earlier timing of phenological events in larger trees. This finding highlights tree size as an important consideration in the management of phenological gardens and tree phenology research in general.
      Xiaoyan Chen, Zhengchuan Liang, Yun Long, Jihong Pan, Tingfa Dong, Qinsong Liu, Xiao Xu
      2024, 17 (2): rtae009.
      Abstract ( 31 )   PDF(pc) (1524KB) ( 10 )   Save
      Although characterization of plant interactions has become a research hotspot to assess the adaptability of endangered plants, the underlying molecular basis remains elusive. Dove tree (Davidia involucrata) seedlings were watered with distilled water (CK), leaf water extract (0.025 g mL-1) and branch water extract (0.1 g mL-1) from Cornus controversa, respectively. Subsequently, the morphology, biomass and gene expression levels of DiSOC1-b and DiCCoAOMT1 were analyzed. The results showed that morphological traits and biomass accumulation of D. involucrata seedlings were decreased by the addition of leaf water extracts, and increased by branch water extracts. Moreover, the gene expression level of DiSOC1-b was significantly down-regulated, while the gene expression level of DiCCoAOMT1 was significantly up-regulated in the stems and roots of D. involucrata upon treatment with leaf water extracts of C. controversa. In contrast, the gene expression level of DiSOC1-b was significantly up-regulated in the leaves and stems, while the gene expression level of DiCCoAOMT1 was significantly down-regulated in the roots of D. involucrata upon treatment with branch water extracts of C. controversa. In addition, the expression level of DiSOC1-b was positively correlated with most of morphological traits and total biomass (Pβ<β0.05), while DiCCoAOMT1 was negatively correlated with the majority of morphological traits in D. involucrata seedlings (Pβ<β0.05). Taken together, these results suggest that water extracts from the leaves and branches of the C. controversa exhibit opposite allelopathic effects and affect the expression levels of genes related to growth (DiSOC1-b) and environmental adaptability (DiCCoAOMT1) in D. involucrata seedlings.
      Qiong Ran, Songlin Zhang, Muhammad Arif, Xueting Yin, Shanshan Chen, Guangqian Ren
      2024, 17 (2): rtae010.
      Abstract ( 68 )   PDF(pc) (1371KB) ( 11 )   Save
      Arbuscular mycorrhizal fungi (AMF) enhance plant tolerance to abiotic stresses like salinity and improve crop yield. However, their effects are variable, and the underlying cause of such variation remains largely unknown. This study aimed to assess how drought modified the effect of AMF on plant resistance to high calcium-saline stress. A pot experiment was performed to examine how AMF inoculation affects the growth, photosynthetic activity, nutrient uptake and carbon (C), nitrogen (N) and phosphorus (P) stoichiometric ratio (C:N:P) of maize under high calcium stress and contrasting water conditions. The results showed that high calcium stress significantly reduced mycorrhizal colonization, biomass accumulation, C assimilation rate and C:N stoichiometric ratio in plant tissues. Besides, the adverse effects of calcium stress on photosynthesis were exacerbated under drought. AMF inoculation profoundly alleviated such reductions under drought and saline stress. However, it barely affected maize performance when subjected to calcium stress under well-watered conditions. Moreover, watering changed AMF impact on nutrient allocation in plant tissues. Under well-watered conditions, AMF stimulated P accumulation in roots and plant growth, but did not induce leaf P accumulation proportional to C and N, resulting in increased leaf C:P and N:P ratios under high calcium stress. In contrast, AMF decreased N content and the N:P ratio in leaves under drought. Overall, AMF inoculation improved maize resistance to calcium-salt stress through enhanced photosynthesis and modulation of nutrient stoichiometry, particularly under water deficit conditions. These results highlighted the regulatory role of AMF in carbon assimilation and nutrient homeostasis under compound stresses, and provide significant guidance on the improvement of crop yield in saline and arid regions.
      Jun-Nan Liu, Fang-Ru Wu, Sergio R Roiloa, Wei Xue, Ning-Fei Lei, Fei-Hai Yu
      2024, 17 (2): rtae013.
      Abstract ( 10 )   PDF(pc) (1080KB) ( 7 )   Save
      Interactions between two plant species can be influenced by the presence of other plant species and such an effect may change as the diversity of the other species increases. To test these hypotheses, we first constructed aquatic communities consisting of 1, 2 and 4 emergent plant species and then grew ramets of Lemna minor only, ramets of Spirodela polyrhiza only or ramets of both L. minor and S. polyrhiza within these aquatic communities. We also included controls with ramets of L. minor, S. polyrhiza or both but without any emergent plants. Biomass and number of ramets of L. minor and S. polyrhiza were significantly smaller with than without the emergent plants, but they did not differ among the three richness levels. The presence of S. polyrhiza did not significantly affect the growth of L. minor, and such an effect was not dependent on the richness of the emergent plant species. Without the emergent plant species, the presence of L. minor markedly reduced biomass (-92%) and number of ramets (-88%) of S. polyrhiza. However, such a competitive effect of L. minor on S. polyrhiza became much weaker in the presence of one emergent plant species (-46% biomass and -39% number of ramets) and completely disappeared in the presence of two or four emergent plant species. Therefore, both the presence and richness of emergent plant species can alter competitive interactions between the two duckweed species. These findings highlight the importance of species diversity in regulating plant-plant interactions.
      Cancan Zhao, Yuanhu Shao, Huijie Lu, Aimée T Classen, Zuyan Wang, Ying Li, Yanchun Liu, Zhongling Yang, Guoyong Li, Shenglei Fu
      2024, 17 (2): rtae012.
      Abstract ( 11 )   PDF(pc) (2220KB) ( 10 )   Save
      Soil nematodes as the most diverse metazoan taxa, serve a diversity of functions in soil food webs and thus can regulate microbial community composition and affect organic matter decomposition and nutrient turnover rates. Because nematodes depend on water films to access food resources, drought can negatively affect nematode-microbial food webs, yet the impacts of drought on nematode diversity and abundance and how these changes may influence food web members and their functions are seldom explored. Here, we coupled research along a drought gradient in arid and semiarid grasslands with a detailed intact plant-soil microcosm experiment to explore the patterns and mechanisms of how drought impacts nematode abundance and carbon footprint, microbial phospholipid fatty acid and heterotrophic soil respiration. Over all in the field and in the microcosm experiment, we found that nematode abundance, carbon footprint and diversity, microbial phospholipid fatty acid and heterotrophic respiration all declined under drier conditions. In addition, drought altered nematode and microbial community composition, through reducing the nematode channel ratio and increasing the relative fungivorous nematode abundance and the fungal to bacterial ratio. In response to drought, the soil decomposition channel shifted from a bacterial to a fungal pathway, indicating decelerated heterotrophic respiration under drought. The study highlights the important contribution of soil nematodes and their associated microbial food web to soil carbon cycling. Our results underscore the need to incorporate key soil fauna into terrestrial ecosystem model evaluation.
      Perspective
      Review
      Hongyang Chen, Qi Zhang, Lingyan Zhou, Xuhui Zhou
      2024, 17 (2): rtae011.
      Abstract ( 5 )   PDF(pc) (1172KB) ( 7 )   Save
      It is well known that aboveground productivity usually increases with precipitation. However, how belowground carbon (C) processes respond to changes in precipitation remains elusive, although belowground net primary productivity (BNPP) represents more than one-half of NPP and soil stores the largest terrestrial C in the biosphere. This paper reviews the patterns of belowground C processes (BNPP and soil C) in response to changes in precipitation from transect studies, manipulative experiments, modeling and data integration and synthesis. The results suggest the possible existence of nonlinear patterns of BNPP and soil C in response to changes in precipitation, which is largely different from linear response for aboveground productivity. C allocation, root turnover time and species composition may be three key processes underlying mechanisms of the nonlinear responses to changes in precipitation for belowground C processes. In addition, microbial community structure and long-term ecosystem processes (e.g. mineral assemblage, soil texture, aggregate stability) may also affect patterns of belowground C processes in response to changes in precipitation. At last, we discuss implications and future perspectives for potential nonlinear responses of belowground C processes to changes in precipitation.
  • Please wait a minute...
    Using the response-effect trait framework to disentangle the effects of climate change and human activities on the provision of ecosystem services by vegetation
    Zheng Cheng, Zhang Fei, Lin Ziqi, Yuan Liuhuan, Yan Hongbin, Duan Gaohui, Liu Yandan, Liu Yangyang, Shi Haijing, Wen Zhongming
    doi: 10.1093/jpe/rtae024
    Abstract ( 7 )    PDF    Save
    Functional traits play a vital role in mediating the responses of ecosystem services to environmental changes and in predicting functioning of ecosystem. However, the connection between functional traits and ecosystem services has become increasingly intricate due to climate change and human activities for degraded ecosystems. To investigate this relationship, we selected 27 sampling sites in the Yanhe River Basin of the Chinese Loess Plateau, each containing two types of vegetation ecosystems: natural vegetation and artificial vegetation ecosystem. At each sampling site, we measured ecosystem services and calculated the composition index of community traits. We established a response-effect trait framework that included environmental factors such as climate, elevation, and human activities. Our results showed that leaf tissue density (LTD) was the overlapping response and effect trait when responding to climate change. LTD is positively correlated with mean annual temperature and negatively correlated with supporting services. Under the influence of human activities, leaf nitrogen content (LNC) and leaf dry matter content (LDMC) were carriers of environmental change. Comparing the two vegetation ecosystems, the relationship between functional traits and ecosystem services showed divergent patterns, indicating that human activities increased the uncertainty of the relationship between functional traits and ecosystem services. Trait-based ecology holds promise for enhancing predictions of ecosystem services responses to environmental changes. However, the predictive ability is influenced by the complexity of environmental changes. In conclusion, our study highlights the importance of understanding the complex connection between functional traits and ecosystem services in response to climate changes and human activities.
    Soil macropores induced by plant root as a driver for vertical hydrological connectivity in Yellow River Delta
    Lumeng Xie, Jiakai Liu, Yi Li, Peisheng Huang, Matt Hipsey, Mingxiang Zhang, Zhenming Zhang
    doi: 10.1093/jpe/rtae019
    Abstract ( 4 )    PDF    Save
    The protection and management of the wetland should consider the changes in hydrological connectivity caused by the structural modifications of the soil macropores. The main purpose of our work is to clarify and quantify the influence of the soil macropores volume on vertical soil hydrodynamic process mechanically and statistically by taking the form of a case-study in Yellow River Delta (YRD), and further reveal the vertical hydrological connectivity in this area. Based on X-ray computed tomography (CT) and constant head permeability test, the results showed a highly spatial heterogeneity of the soil structure in the YRD, hydraulic parameter (Ks) was negatively correlated with bulk density (BD) and positively with soil macropore volume, soil aeration (SA), and maximum water capacity (MWC). Using Hydrus 1-D software and the Green-Ampt model, we estimated the characteristics of hydrodynamic process in the soil without macropores, then evaluated the effect of the soil macropore on soil hydrological connectivity by comparing the experimental results with the simulation results. We found that increasing soil microporosity improved the convenience of water movement, which would enhance the hydrological connectivity of the region. The results will further help to reveal the eco-hydrological process at vertical scale in soil and provide a theoretical guide for wetland conservation and restoration.
    Spatial variations in leaf trichomes and their coordination with stomata in Quercus variabilis across Eastern Asia
    Yanhua Zhu, Ji Zheng, Hongzhang Kang, Nan Hui1, Shan Yin, Zhicheng Chen, Baoming Du, Chunjiang Liu
    doi: 10.1093/jpe/rtae023
    Abstract ( 4 )    PDF    Save
    Leaf trichomes are derived from epidermal cells and serve an important function in regulating leaf heat balance and gas exchange. Variation in leaf functional traits is critical for predicting how plants will react to global climate change. In this study, we aimed to investigate how leaf trichome densities vary along large geographic gradients and how they interact with with stomata in response to environmental change. We investigated the leaf trichome densities of 44 Quercus variabilis populations in Eastern Asia (24° to 51.8° N, 99° to 137° E) and their correlation with climatic factors and stomatal traits. In addition, 15 populations were grown in a common garden to study their adaptive variation and coordination with stomata. The mean value of trichome density in situ conditions was 459.78 trichome mm-2 with a range of 325.79 to 552.38 trichome mm-2. Trichome density increased with latitude and decreased with longitude. Both temperature and precipitation reduced the trichome density. Moreover, trichome density was positively correlated with stomatal density whether in situ or in the common garden, and both increased with drought. Our results suggested that leaf trichomes possess highly adaptive variation and are in close coordination with stomata in response to climate change. Our findings provide new insights toward elucidating the interactions between leaf traits and the adaptive strategies of plants under climate change.
    An improved method for edge detection based on neighbor distance for processing hemispheric photography in studying canopy structure and radiative transfer
    Yasi Liu, Dayong Fan, Han Sun, Xiangping Wang
    doi: 10.1093/jpe/rtae022
    Abstract ( 13 )    PDF    Save
    Hemisphere photos are now widely applied to provide information about solar radiation dynamics, canopy structure and their contribution to biophysical processes, plant productivity and ecosystem properties. The present study aims to improve the original “edge detection” method for binary classification between sky and canopy, which works not well for closed canopies. We supposed such inaccuracy probably is due to the influence of sky pixels on their neighbor canopy pixels. Here we introduced a new term “neighbor distance”, defined as the distance between pixels participated in the calculation of contrast at the edges between classified canopy and sky, into the “edge detection” method. We showed that choosing a suitable neighbor distance for a photo with specific gap fraction can significantly improve the accuracy of the original “edge detection” method. Combining the modified “edge detection” method and an iterative selection method, with the aid of an empirical power function for the relationship between neighbor distance and manually verified gap fraction, we developed a ND-IS (Neighbor Distance-Iteration Selection) method that can automatically determine the threshold values of hemisphere photos with high accuracy and reproductivity. This procedure worked well throughout a broad range of gap fraction (0.019 to 0.945) with different canopy composition and structure, in five forest biomes along a broad gradient of latitude and longitude across Eastern China. Our results highlight the necessity of integrating neighbor distance into the original “edge detection” algorithm. The advantages and limitations of the method, and the application of the method in the field were also discussed.
  • 2024, Vol. 17 No.1
    2023, Vol. 16 No.6 No.5 No.4 No.3 No.2 No.1
    2022, Vol. 15 No.6 No.5 No.4 No.3 No.2 No.1
    2021, Vol. 14 No.6 No.5 No.4 No.3 No.2 No.1
    2020, Vol. 13 No.6 No.5 No.4 No.3 No.2 No.1
    2019, Vol. 12 No.6 No.5 No.4 No.3 No.2 No.1
    2018, Vol. 11 No.6 No.5 No.4 No.3 No.2 No.1
    Free
    2017, Vol. 10 No.6 No.5 No.4 No.3 No.2 No.1
    Free
    2016, Vol. 9 No.6 No.5 No.4 No.3 No.2 No.1
    2015, Vol. 8 No.6 No.5 No.4 No.3 No.2
    Free
    No.1
    2014, Vol. 7 No.6 No.5 No.4 No.3 No.2
    Free
    No.1
    2013, Vol. 6 No.6 No.5
    Free
    No.4 No.3 No.2 No.1
    2012, Vol. 5 No.4 No.3 No.2 No.1
    Free
    2011, Vol. 4 No.4 No.3 No.1-2
    Free
    2010, Vol. 3 No.4 No.3 No.2 No.1
    Free
    2009, Vol. 2 No.4
    Free
    No.3 No.2 No.1
    2008, Vol. 1 No.4 No.3 No.2 No.1
Highly Cited Articles
Special Issue

Editor’s Choice

Asymmetric and uncertain interactions within mutualisms
Rui-Wu Wang, An-Na Shi, Xiao-Wei Zhang, Min Liu, K. Charlotte Jandér, Derek W. Dunn
The conspicuously large bracts influence reproductive success in Thunia alba (Orchidaceae)
Shi-Mao Wu, Jiang-Yun Gao
Energy partitioning and controlling factors of evapotranspiration in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau
Zhaoyong Hu, Genxu Wang, Xiangyang Sun, Kewei Huang, Chunlin Song, Yang Li, Shouqin Sun, Juying Sun, Shan Lin